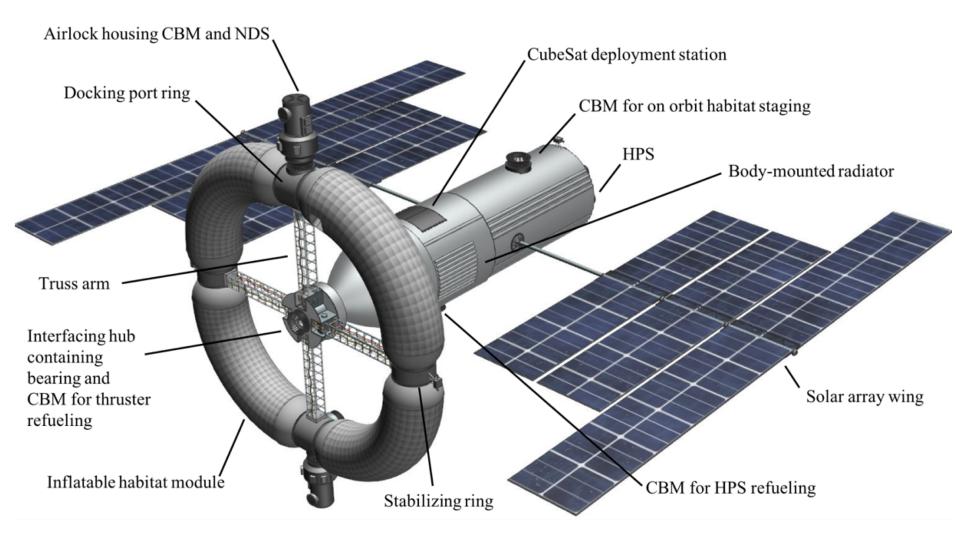


ARIES Adaptable Rotating Interplanetary Exploration System

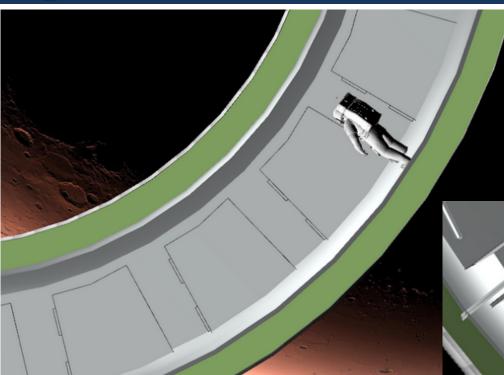
Iaroslov Ekimtcov, Megan Geyer, Lucas Hobart, Linyi Hou, Elena Kamis, Adhbuth Reddy Kunta, Connor Latham, Sara Legg, Courtney Leverenz, Rahil Makadia, Josh Pilat, Josh Super, Jasmine Thaweesee

Vehicle Overview


- Concept of Operations
 - Development and Testing
 - Assembly and Trans-Lunar Injection
 - Conjunction-Class Mission Architecture
- Hybrid Propulsion Stage Specifications
- Artificial Gravity Generation
- ➤ Habitat
 - ECLSS
 - Other subsystems
- Risk Analysis
- Budget Analysis

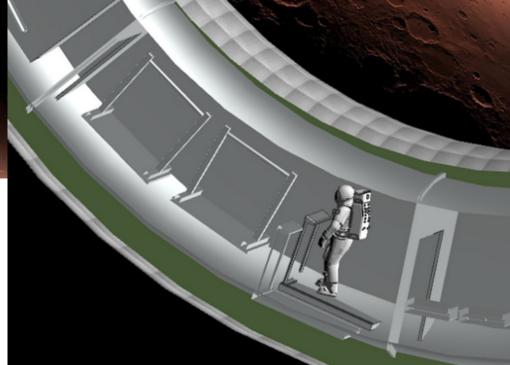
Vehicle Overview

Exterior Ports and Structure



Hybrid Propulsion Stage Layout

Bearing and interfacing hub Α CubeSat deployment station B Refueling craft docked via CBM B C Attitude control thruster pod D SEP thruster E Chemical thruster F Robotic arm G Body-mounted radiator \mathbf{H}

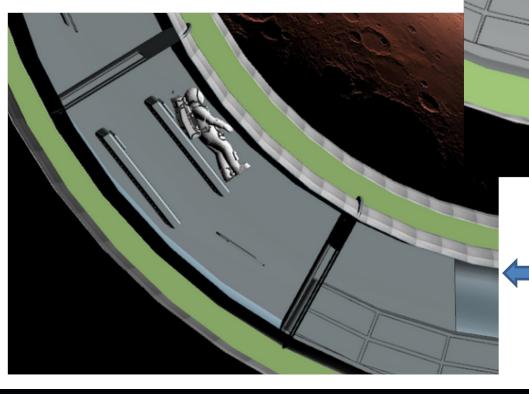


Habitat Layout

Storage Module

- Contains: Redundant systems,
 Science, Food Storage
- Can be converted to livable space if an inflatable module experiences failure

Living Module:


- Exercise Suite
 - COLBERT Treadmills, ARED, Bikes
- Medical Bay
- Hygiene Station
 - Showers double as Wash Machine

Habitat Layout

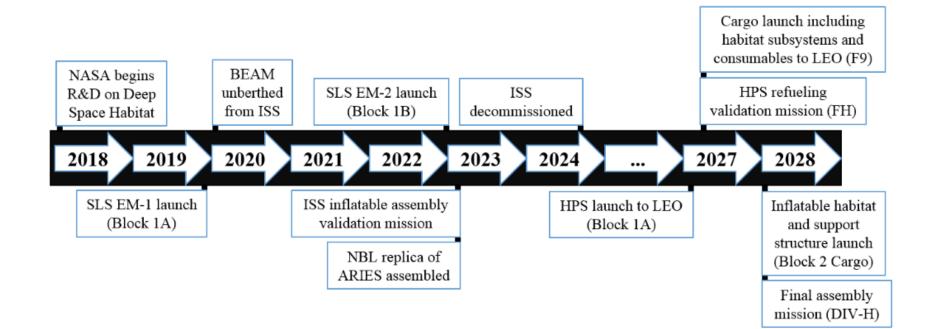
Research Module

- Communication Stations
- Vegetation Racks
 - Nutrient Delivery System
- Experimentation Areas

Habitation Module

- Sleeping Quarters
 - Personal Quarters following
 - 5.4 m³ guidelines
 - Angled beds
- > Galley
- Communal Space

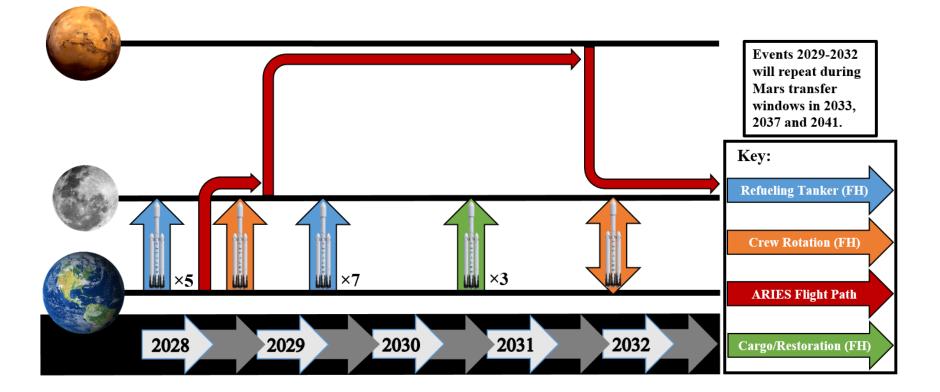
Concept of Operations



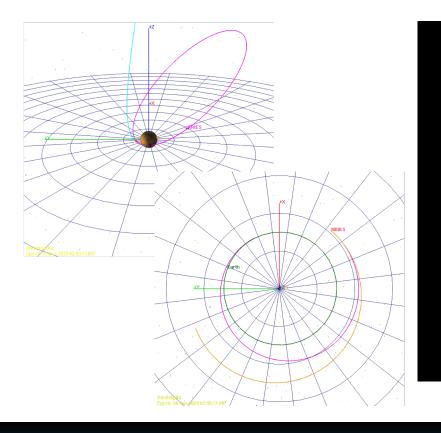
Development and Testing (2018-2027)
 Assembly and Validation (2027-2029)
 Normal Operation (2029-2044)

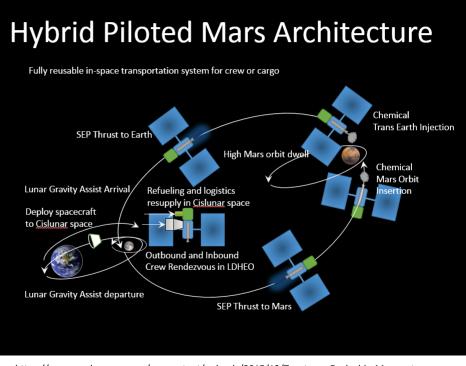
- Currently ongoing
 - -Deep Space Habitat
 - -BEAM
- ➢Inflatable Habitat Testing
- ≻ISS Model Replacement
- Artificial Gravity Training

Development and Testing



6


- ≻Hybrid Propulsion Stage (2027)
- ► Refueling Validation
- ≻Truss & Habitat (2028)
- ≻Assembly Crew
- ≻Low Power Lunar Transit


Assembly and Validation

- ➤ Transfer windows 2028, 2033, 2037, 2041
- LDRO LDHEO MTO Mars 5 Sol ETO LDHEO LDRO
- ➢ SEP 6,230m/s Chemical 765m/s

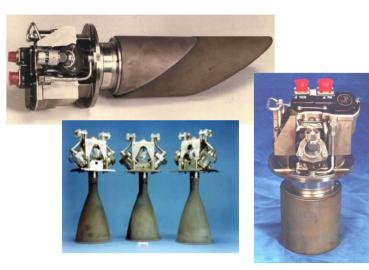
https://www.exploremars.org/wp-content/uploads/2015/12/Troutman-Evolvable-Mars.pptx

Hybrid Propulsion Stage

Solar Electric Propulsion System

- X3 Nested Hall Effect Thruster
- Propellant: Xenon
- ≻ Isp: 2650s
- ≻ Thrust: 17.12N (2.14N)
- ➢ Power: 291.2kW (36.4kW)

≻ Count: 8



http://pepl.engin.umich.edu/pdf/2014_Florenz_Thesis.pdf

Chemical Propulsion System

- R-1E: habitat spin
 - 110N, 280s, MMH+NTO, x4
- ➤ S22-02: attitude
 - 22N, 288s, MMH+NTO, x32
- ≻ R-42DM: propulsion
 - 890N, 327s, hydrazine + NTO, x20

Aerojet Rocketdyne Bipropellant Engine Datasheets

R-1E

Fig. 1: 22 N Thruster

R-42DM

S22-02

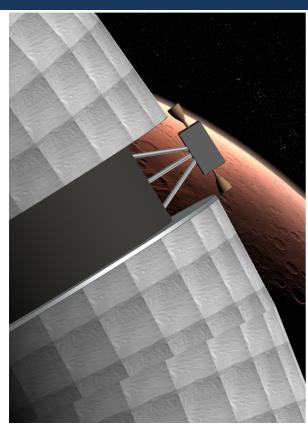
r 1g, 1; 22 N 1 hru

SAO/NASA Astrophysics Data System

Attitude Determination and Control

Sensor Suite

- Star Tracker
- Sun Sensor
- Gyroscope
- Actuators
 - Bipropellant Hydrazine Thrusters
 - Coarse Attitude Adjustment
 - Spin-up Maneuvers
 - Control Moment Gyros
 - Fine Attitude Adjustment



Artificial Gravity

Artificial Gravity

- Spin-up, spin-down maneuvers controlled by R-1E thrusters (each provides 110N of thrust)
- Total propellant consumed (5 spin-up, spindown cycles): 488.7kg NTO, 675.8kg MMH
- Total time for spin-up or spin-down: 32 min
- Crew effects have been minimized
 - Centrifuge rotates at 5.55rpm
 - Agreed upon limit: 6rpm
 - Gravity gradient: 18.2%
 - Agreed upon limit: 20%

Habitat

Environmental Control and Life Support Systems

- MMOD Shielding: Aluminum (Al) 6061T6 Whipple
- Radiation Shielding
 - .6m thick wall
 - Five Water Walls 3.5cm thick
 - Minor coat of Polyethylene
- > EVAs will be completed by two Robonauts
 - Robonaut will be attached on SSRMS
- > Air filtration: Removing CO_2 , combing with H_2 , create O_2 and CH_4
 - Four bed molecular sieve, Sabiator catalytic conversion, and electrolysis of water
 - Lithium Hydroxide Canisters as backup
- > Waste Management:
 - low pressure vacuum, filtration beds, catalytic reactor, electricidal conductivity sensors

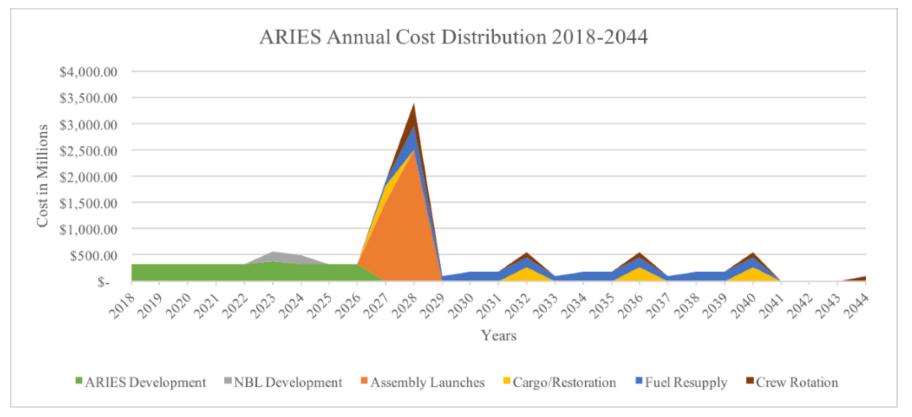
- Bone/Muscle Deterioration:
 - Resistive Exercise Devices, supplements, angled beds
- Sleep loss/Circadian Desynchronization:
 - Sleep Medication, sleep hygiene, naps, caffeine, adjustable LED lighting, sound dampening, no windows in sleeping cabin
- Mental Health
 - Windows in 2/4 sections, fresh produce, entertainment methods, personal space, pre-mission testing and preparation
- Personal Hygiene
 - Showers, sinks will function under artificial gravity
 - Showers will double as clothes washing stations
- > Crops
 - Grown using nutrient delivery system
 - Salad crops, ready to eat

Communications:

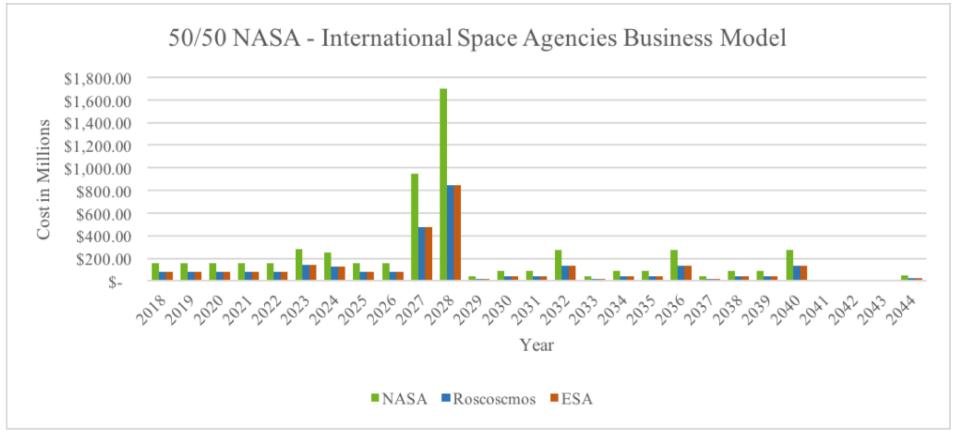
- Optical and Laser
- Advanced pointing imaging camera, space security system
- Proximity system for communications functionality
- Radio Frequency combination of X-band and Ka-band systems
- Command & Data Handling:
 - Dedicated C&DH computer used to monitor the vehicle's subsystems
 - Issue commands to those subsystems
 - Communicate with ground stations

Risk Analysis

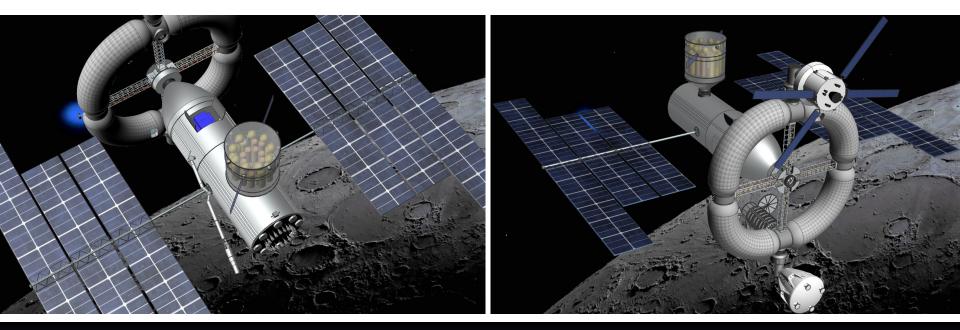
Risk Matrix


Risk	Likelihood	Consequence	Level	Mitigation						
Exposure to Radiation	4 – High	4 – Exposure to radiation if		Robonaut attached to outside of module						
from EVA		repairs necessary outside of		to execute repairs.						
		Earth's influence								
Micro-Meteoroid and	3 – Moderate	5 - Loss of pressurization or		Use a robonaut to complete all repairs						
Orbital Debris		damage to the propulsion		from the safety of the module						
(MMOD) Impact		stage								
Artificial Gravity Spin	1 - Very Low	4 - Crew will not be adjusted		Train crew for zero gravity environments,						
Up/Down Failure		to Mars gravity, quality of		handholds for maneuvering in						
		life lowered		microgravity, sleeping bags able to be						
				attached to module walls, redundant						
				containment for liquids						
Propulsion System	2 – Low	5 – Mission Unable to		Multiple engines provide redundancy to						
Failure		Continue		prevent total propulsion failure, spare						
				electricity for the SEP system						
Inflation of Habitat	3 – Moderate	4 – Loss of materials and		Sections will seal individually, manual						
Failure		goods within respective		deployment requiring training , robot for						
		habitat		repairs, supplies will be spread out						
ECLSs Component	2 – Low	3 - Momentary inability to		Spares will be kept in storage upon						
Failure		use part or system		inflation, 3D printing available						
Crew Physical and	4 – High	4 – Crew members may be		Windows for viewing, fresh produce,						
Mental Health		unable to perform necessary		entertainment provided, each crew						
Deterioration		daily tasks required for		member will have personal space						
		survival of crew as a whole								
Airlock/Docking Port	2 – Low	3 – Supplies may be		Airlocks/Docking locations will each						
Failure		momentarily suspend for		have two possible attachment points for						
		crew use		redundancy						

Budget Analysis

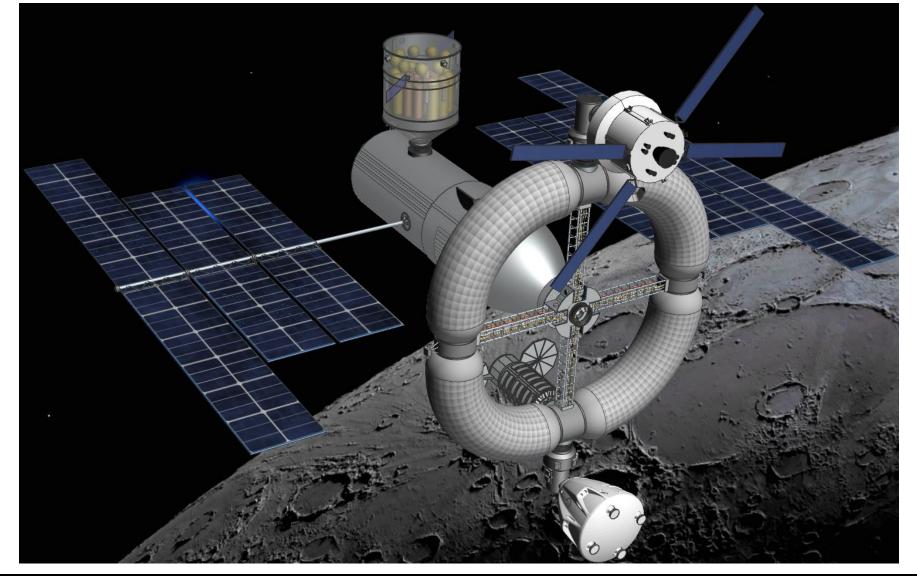


- ➤ Total Research, Design, and Development Cost: \$2,901 million
- ➢ Total Construction Cost: \$8,578.8 million
- Cost per ARIES Resupply Mission: \$2,863.5 million



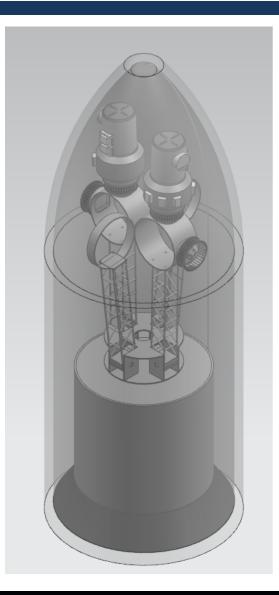
- Total Mission Cost: \$11,971 million
- \succ 50% to NASA, 25% to ESA, 25% to Roscosmos

- Unique mix of legacy and innovative technology
- Versatile habitat design capable of supporting alternative missions
- Minimum crew-impact artificial gravity
- Powerful propulsion stage
- Multiple included cost-reduction options

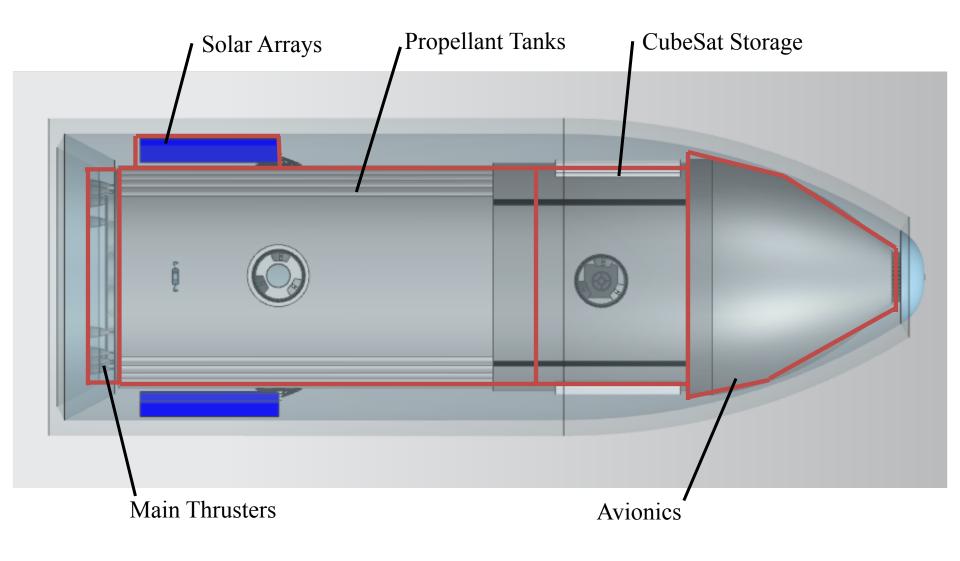


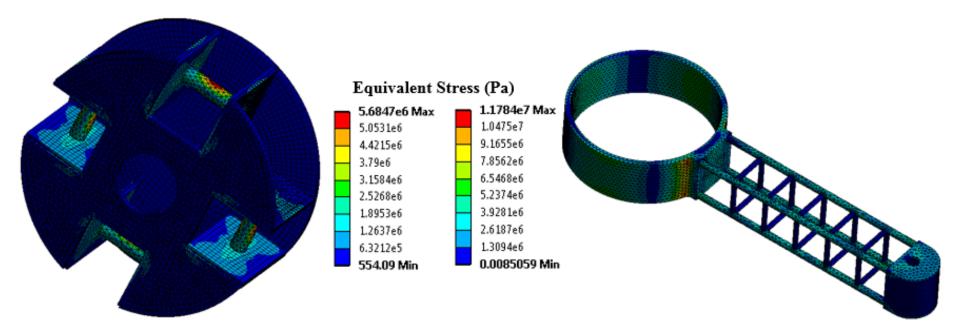
Supplemental Slides

ARIES With Berthed Spacecraft


Master Equipment List

ARIES System	Mass (kg)	Power (kW)	TRL	ARIES System	Mass (kg)	Power (kW)	TRL		
ECLSS				Thermal					
COLBERT Treadmill [17]	998	1.5	9	(3) Radiators	2,000	0	8		
Exercise Bike [18]	250	0.4	9	Power					
ARED [19]	1,000	0.2	9	(2) Solar Array Wing [20]	1,732	0	8		
Air Revitalization [21]	652	2.6	9	(13) Battery [22]	15	0	9		
Temperature Control	271	2.2	9	Propulsion/Fluids					
Fire Control [21]	20	0	9	(10) R-42 DM Thruster [3]	73	0	9		
Water Systems [21]	552	0.5	9	(4) R-1E Thruster [3]	8	0	9		
Lighting [21]	72	0.3	9	(32) S22-02 Thruster [23]	22	0	6		
Shielding [21]	1,461	0	5	(8) X3 Thruster [24]	1,840	291.2	6		
Waste Management [21]	184	0	9	RCS Fuel/Oxidizer	76,573	0	9		
Structures				HPS Fuel/Oxidizer	1,165	0	9		
(4) Inflatable Module	9,373	0	9	Other Subsystems					
Truss Assembly	32,796	0	6	C&DH Package [21]	131	1	9		
HPS	25,506	0	6	Communication Package [21]	210	0.6	9		
(5) CBM [25]	5,175	1.5	9	Radio Transceiver [26]	20	0.2	9		
(2) NDS [27]	648	0.5	7	Power Amplifier [28]	6	0.5	9		
(2) Quest Airlock [29]	19,847	0.3	9	Additional Equipment					
SSRMS [30]	451	0.6	9	Stowed Items [21]	2,476	5.0	9		
PDGF [31]	12	0.4	9	Spares and Packaging [21]	4,710	0	9		
ADCS				(2) Robonauts	300	0	9		
ADCS Sensor Suite [21]	33	0.2	9	Food+30%	10,473	0	9		
Star Tracker [32]	3	0.2	9	Water+30%	3,848	0	9		
CMGs [33]	28	0.2	9	Totals	204,661	310.1			


Payload Fairings


HPS Sections

Finite Element Analysis

- Material: Aluminum 6061
- ➢ Yield Stress: 276MPa
- ➢ Force on each truss arm: 82.7kN
- Force on each interfacing hub joint: 89.2kN

