grss.prop.prop_unscented.SigmaPoints#
- class grss.prop.prop_unscented.SigmaPoints(x_dict, cov, sp_type, alpha=None, beta=None, kappa=None, sqrt_func=None)#
Bases:
object
Class for representing sigma points for the unscented transformation.
- __init__(x_dict, cov, sp_type, alpha=None, beta=None, kappa=None, sqrt_func=None)#
Initialize a sigma point object.
- Parameters:
x_dict (dict) – solution dictionary containing cometary/cartesian elements
cov (numpy.ndarray) – covariance matrix of the solution
sp_type (str) – type of sigma point. Choose from merwe or julier
alpha (float) – scaling parameter for sigma points
beta (float) – scaling parameter for sigma points
kappa (float) – scaling parameter for sigma points
sqrt_func (function) – function to compute the square root of the covariance matrix
Methods
__init__
(x_dict, cov, sp_type[, alpha, ...])Initialize a sigma point object.
reconstruct
(transformed_sigma_points)Reconstruct the mean and covariance from transformed sigma points.
- reconstruct(transformed_sigma_points)#
Reconstruct the mean and covariance from transformed sigma points.
- Parameters:
transformed_sigma_points (np.ndarray) – transformed sigma points
- Returns:
new_x (np.ndarray) – reconstructed mean
new_cov (np.ndarray) – reconstructed covariance